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Emergence of stability in a stochastically driven pendulum: Beyond the Kapitsa pendulum
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We consider a prototypical nonlinear system which can be stabilized by multiplicative noise: an under-
damped nonlinear pendulum with a stochastically vibrating pivot. A numerical solution of the pertinent Fokker-
Planck equation shows that the upper equilibrium point of the pendulum can become stable even when the
noise is white, and the “Kapitsa pendulum” effect is not at work. The stabilization occurs in a strong-noise

regime where WKB approximation does not hold.
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It has been known for a long time that multiplicative noise
can enhance stability of nonlinear systems. Examples are nu-
merous indeed and culminate at noise-induced phase transi-
tions far from equilibrium [1]. This Brief Report deals with a
noise-induced stabilization of oscillating systems. As a pro-
totypical example we consider an underdampled nonlinear
pendulum with a stochastically vibrating pivot. The stochas-
tic driving introduces both multiplicative and additive noise;
see Fig. 1. Our numerical simulations clearly show that the
multiplicative noise can stabilize the otherwise unstable up-
per equilibrium point of the pendulum. The mechanism for
this stabilization is markedly different from, and more subtle
than, the “Kapitsa pendulum” mechanism. The Kapitsa pen-
dulum involves a (deterministic) monochromatic parametric
driving of the pendulum at a frequency that is much higher
than the natural frequency of the pendulum [2]. Here the
upper equilibrium point becomes stable if the driving accel-
eration is higher than a critical value depending on the pen-
dulum length and the gravity acceleration. In the Kapitsa
pendulum problem the change in stability of the upper equi-
librium point comes from a change in the effective potential
of the pendulum [2].

Extensions of the Kapitsa pendulum effect to multiplica-
tive stochastic driving have also been considered [3,4]; see
Ref. [5]. for a review. In these extensions the noise spectrum
is strongly peaked at a single frequency which is much
higher than the natural frequency of the pendulum. The pres-
ence of a high-frequency noise of a sufficient strength modi-
fies the effective potential, and this can stabilize the upper
equilibrium point. In the theoretical treatment, this setting
introduces a time-scale separation which permits a perturba-
tive approach [5]. In this work we consider a model stochas-
tic driving with a flat spectrum: a white noise. Here all fre-
quencies from 0 to % are equally present, and there is no
time-scale separation. We will show that, for such a noise,
the upper position of the pendulum can also become stable.
However, the stabilization cannot be traced to a change in the
effective potential of the pendulum.

A stochastically driven simple gravity pendulum can be
described by a Langevin equation,

6=Q, (1)
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where 6 is the deviation angle of the pendulum; see Fig. 1, )
is the angular velocity, wy,=Vg/![ is the harmonic frequency
of the pendulum, vy is the damping factor, [ is the pendulum
length, g is the gravity acceleration, and u and « are the
magnitudes of the multiplicative and additive noises & and
&, respectively. The noises are assumed to be Gaussian,
white with zero mean, and mutually uncorrelated,

(&(1)=0, (&g =28(t-1")0,;, i.j=12. (3)
Langevin Egs. (1) and (2) are equivalent (see, e.g., Ref. [6])
to the following Fokker-Planck equation for the probability
distribution W(8,),1):

3
W,=— QW4+ w sin OW, + 2y£(QW)
+ <a+ l%sinz 0) WQQ, (4)

where the indices 6, () and ¢ denote the corresponding partial
derivatives of W(6,(),¢). As the noises are () independent,
there is no difference between the Ito and Stratonovich inter-

pretations. Introducing the dimensionless variables 7= wt,
O =0/wy, and W(t,0,Q)=w,W(t, 0,L)), we can rewrite the
Fokker-Planck equation in a dimensionless form,

& 1

d
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FIG. 1. (Color online) Schematic of the stochastically driven
simple gravity pendulum.

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.042102

BRIEF REPORTS

d
W,=—QW,+sin W, + ZFE(QW) + (e + 8sin® O)Woq,

(5)

where I'=y/w), e=a/w], and d=u/(I’w]) are the rescaled
parameters of the system, and the tildes are omitted.

We assume that, after a transient, the stochastic system
approaches a smooth steady state for which W(6,Q,r)
is independent of time: W(6,Q,r—x)=W(6,Q). The
steady-state probability distribution W(6,) obeys the
equation

_ _ J _ _
— QW,+sin W, + 2F£(QW) +(e+ 8sin® )W =0.

(6)

We classify a point (0,()) as a stable point of the system if it
is a local maximum of the stationary probability distribution
W(6,Q). The necessary and sufficient conditions for a func-
tion of two variables f(x,y) to have a local maximum at
(x0,yo) are (see, e.g., Ref. [7]),

fx(xO’yO) =fy(x0’y0) =0, (7)
fxx(x07y0) <0 or fyy(xoayO) < 07 (8)
fxx(x()’yO)f:vy(xO’yO) —fiy(xo,yo) > O» (9)

where the indices x and y denote partial derivatives. Let us
examine the stability properties of the upper equilibrium
point (#=7, Q=0) of the driven pendulum. Equation (6) is
invariant under the transformation — 27— 60, ) — —(), that
is under a reflection of the axes 6 and () around the point

(7,0). Its solution W(6,€)) must obey the same symmetry.

Therefore, the first derivatives W, and W, must vanish at
(7,0), and so Eqs. (7) are satisfied there. This immediately
follows

_ 2T _
Waq(m,0)=-—W(m,0) <0,
€

so Eq. (8) is also satisfied at (7,0). As a result, the necessary
and sufficient condition for (7,0) to be a stable point is
given by Eq. (9),

A = Woo(m0)Wyy(m,0) - Wi (m,0)>0.  (10)
For =0 (only additive noise), steady-state Eq. (6) is soluble
analytically (see Ref. [8]),
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W(0,Q)= —5—7——
(6,) 2713/281/210(2F/8)6Xp

[— E(92—2 cos 0)} ,

(11)

where I(...) is the modified Bessel function. In this case the
point (7,0) is unstable, as the stability parameter A, defined
in Eq. (10), is negative,

PHYSICAL REVIEW E 80, 042102 (2009)

FIG. 2. (Color online) A steady-state probability distribution
with no multiplicative noise. The parameters are ¢=0.1, I'=0.1, and
6=0. This solution evolved from the initial condition
W=(Qmm)lexp(—Q?) after 60 normalized time units. It coincides
with analytical solution (11).

A r ( 4F> <0 (12)
=— =5 -exp|l—-— .
0 773831(2)(21"/8) P €

Probability distribution (11) is depicted in Fig. 2.

What happens when 6> 07? First, we show that there is no
stabilization in the weak-noise limit, d~¢e<<1, I'. In this
limit one can use a dissipative variant of WKB approxima-
tion (see e.g., Ref. [6]) and make the ansatz

5(9,9)]

W(6,Q) :A(0,Q)exp[— ,
assuming that the prefactor A varies on scales much larger
than 1/&. In the leading order in 1/& one obtains

)
QS,—sin Sg —2I'QSq + (1 + —sin® 9)5@ =0. (13)
&

This first-order partial differential equation for the action
S(6,Q) has the form of a stationary Hamilton-Jacobi equa-
tion (see e.g., Ref. [9]) with the Hamiltonian H(8,Q,p,,p»)
of the form

5
H=Qp, —sin 6p, - 2I'Qp, + (1 + —sin? a)pg. (14)
&

Here p;=S,4 and p,=S( are the canonical momenta conju-
gated to the coordinates € and (), respectively. As Hamilton-
Jacobi Eq. (13) is stationary, we are interested in the zero-
energy dynamics H=0. The Hamilton’s equations

. 1)
0=0Q, Q=-sin 0—2FQ+2(1 + —sin? 0>p2, (15)
€

pr=cos Opy= S0 205k, pa=-pi+20ps,  (16)
have two zero-energy fixed points: a;=(0,0,0,0) and
a,=(1,0,0,0), corresponding to the lower and upper equi-
librium points of the pendulum, respectively. The linear sta-
bility of the upper equilibrium point a, is determined by the
quadratic approximation to the Hamiltonian around a,,
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FIG. 3. (Color online) Multiplicative noise stabilizes the upper
equilibrium point of the pendulum and makes the pendulum
bistable. Shown is the steady-state probability distribution W(6,(),
which exhibits a local maximum at the upper equilibrium point
(6=, Q=0). The parameters are ¢=0.1, I'=0.1, and 6=2. The
steady-state probability distribution was found by solving numeri-
cally time-dependent Fokker-Planck Eq. (5). It evolved from initial
condition (11) after 60 dimensionless time units.

H(0.Q.p1.py) = Qp, + Op, = 2TQpy+p3. (17)

This quadratic approximation is noiseless, as the noise term
in Eq. (14), (8/¢)sin? ﬁpg, is biquadratic in small deviations
from the fixed point. Therefore, a weak multiplicative noise
does not generate any correction to the potential of the pen-
dulum, in agreement with an early observation [3], and can-
not change the stability properties of the system.

However, for a strong multiplicative noise numerical so-
lutions of time-dependent Fokker-Planck Eq. (5) do show
emergence of stability of the upper equilibrium point. We
obtained these numerical results with a “Mathematica” partial
differential equations solver. The numerical domain was 0
<O0<27 and -0, <Q<Q_ . with Q.. chosen, sepa-
rately for each set of parameters, sufficiently large. Periodic
boundary conditions in # were used. As to the boundary con-
ditions in (), we checked that, at sufficiently large €}, the
steady-state solution remained the same up to 1 per cent,
whether we imposed periodic or zero-W conditions at the
boundary. Larger (), needed to be taken when I" became
smaller than & and when & became large compared to I" and
€. The values of (), that we used ranged from Q,,,,=2 for
I'=0.5, €=0.05, and 6=0.15 to Q=15 for ['=0.025, ¢
=0.5, and 6=0.43. After verifying that €, is sufficiently
large, we used the zero-W boundary conditions in (2, as this
choice reduced the computational time. For each set of pa-
rameters &, I' and & we used analytical solution (11) for &
=0 as the initial condition.

We ran the solution until #=t,,, such that the value of A,
evaluated at t=t,,,, was within 1 per cent from its value at
t=ty./2. The larger the parameter I', the smaller 7,,,, was
needed. The values of 7., that we used ranged from 40 for
I'=1, €=0.3, and 6=0.6 to 140 for I'=0.025, £=0.05, and
0=0.15.

At small I'/e or large 6 the steady-state probability dis-
tribution broadens which demands a larger €),., a longer
computation time and more computer memory. At large I'/ &
or small § the distribution becomes too narrow to numeri-
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FIG. 4. (Color online) The stability parameter A, normalized to
|Ag| from Eq. (12), is plotted versus the rescaled magnitude of the
multiplicative noise & for different values of & at ['=0.1. The lines
are only given for guiding the eyes. The crossing point of each plot
with the line A=0 yields 4.

cally resolve it with confidence. We verified that, starting
from an arbitrary initial condition, the probability function
always converges to the same steady-state solution. We also
checked that for 6=0 the steady-state solution coincides,
with a high accuracy, with analytical solution (11).

Figure 3 gives a typical numerical example of a steady-
state probability distribution having a distinct local maxi-
mum at (7,0), in addition to the expected (higher) peak at
(0,0). Also noticeable is a significant broadening of the prob-
ability distribution, compared with the case of only additive
noise (see Fig. 2).

To determine the stability properties of the upper equilib-
rium point (7,0), we plotted the stability parameter A, de-
fined in Eq. (10), versus the rescaled magnitude of the mul-
tiplicative noise &, for different values of I' and e. Several
examples of such plots are shown in Fig. 4. Using interpola-
tion, we found the critical values 8,=4,(I", &) of &, at which
A=0.

Figure 5 shows the plot of &, versus I at different . One
can see that &, slowly decreases with decreasing I' and ap-
proaches a finite value at I'— 0. The plot of &, versus ¢ at
different I', presented in Fig. 6, shows a much stronger,
square-root-like dependence at small . Our data for different
I' do not contradict a power-law behavior &§.~¢&% with
a=0.44, as shown in Fig. 7 for I'=0.1. When & approaches
0, o, also goes to zero, and one would expect to always see
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FIG. 5. (Color online) The critical rescaled magnitude of the
multiplicative noise &, vs the rescaled damping factor I" for differ-
ent values of €. The lines are only given for guiding the eyes.
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FIG. 6. (Color online) The critical rescaled magnitude of the
multiplicative noise &, vs the rescaled magnitude of the additive
noise ¢ for different values of I'. The lines are only given for guid-
ing the eyes.

stability in this case. As € — 0, however, the probability dis-
tribution develops singularities both at (0,0), and at (77,0),
but the peak at (0,0) becomes much higher than that at
(77,0). A local maximum at (7r,0) is physically insignificant
in this case. Only with a sufficiently large additive noise the
probability distribution becomes sufficiently broad to allow a
reasonable probability for the pendulum to be at and around
(7,0).

In summary, we have investigated the stabilization of a
prototypical nonlinear oscillating system by a multiplicative
white noise. The stabilization is clearly observed in the nu-
merical solution of the Fokker-Planck equation and requires
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FIG. 7. The log-log plot of &, vs & for ['=0.1. A linear fit gives
a slope of 0.44*0.01 with the coefficient of determination
R?=0.997 26.

a supercritical noise magnitude. The stabilization cannot be
traced to a change in the effective potential of the system and
is not predicted by a WKB analysis which assumes a weak
noise. The predicted effect should be observable in experi-
ment. A stochastically driven pendulum will always spend
more time around its lower equilibrium point. Therefore, to
observe the stabilization effect, one should track the devia-
tion angle of the pendulum for a sufficiently long time and
analyze the residence time histogram as a function of the
deviation angle and angular momentum.
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